
 

 

  
Abstract —A steel bridge in operation is subjected to multiple 

variable stress range spectrum from the passage of axles of vehicles 
of different weights. The fatigue reliability assessment of steel 
bridges can be performed using the equivalent stress range, which is 
converted from the variable stress range spectrum. The paper presents 
a case study of the identification of the coefficient of variation of the 
equivalent stress range of steel girders. The histogram of equivalent 
stress range is statistically evaluated with consideration to 
uncertainties resulting from the statistical evaluation of the histogram 
of stress range spectrum from field monitoring. It is shown that the 
equivalent stress range can be rationally considered as a random 
variable with Gauss probability density function with coefficient of 
variation of 0.1. The case study is evaluated using the Latin 
Hypercube Sampling statistical method. The results are exploitable in 
the probabilistic analyses of reliability and lifetime of bridges using 
linear elastic fracture mechanics. 
 

Keywords — Equivalent stress range, fatigue, bridge, steel, linear 
fracture mechanics, probability, reliability. 

I. INTRODUCTION 
tructural fatigue occurs whenever a bridge structure is 
subjected to time varying loads [1, 2]. Each time a load 

cycle is applied, an incremental amount of damage occurs. 
This damage is cumulative in nature and accumulation 
continues until failure occurs. 

Recently, a number of different methods have been 
proposed for estimating the fatigue life of steel bridges. For 
instance, Righiniotis [3] concluded that the fatigue life of steel 
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railway bridges subjected to increasing rail traffic load is 
drastically reduced when the rail traffic load is increased to a 
certain degree. Rao and S. Talukdar proposed a systematic 
approach based on the linear damage theory to calculate the 
fatigue life of a bridge with respect to its dynamic interaction 
with a vehicle [4]. Leander and Al-Emrani [5] identified the 
significant influence of material parameters and stress intensity 
factor on the reliability index β using linear elastic fracture 
mechanics and sensitivity analysis. Leander [6] proposed a 
probabilistic model for fatigue life prediction based on vehicle 
data from bridge weigh-in-motion measurements. Kim et al. 
[7] developed a fatigue prediction model based on using the 
measured variable stress spectra of three steel bridges. Nagy et 
al. [8] experimentally investigated crack propagation in 
orthotropic steel decks near the weld connecting the 
longitudinal stiffener. Hasni et al. [9] introduced the use of 
artificial intelligence in processing strain data from wireless 
sensors mounted on steel bridge girders. 

The effective prediction of the fatigue life of steel bridge 
members susceptible to fatigue requires timely decision 
making for maintenance and rehabilitation planning [10, 11]. 
The current trend in these works is not the use of one, but 
of multiple MCDM methods in problems of ranking and 
selection [12-14]. 

The basis for predicting the fatigue life in the complicated 
time history is empirical data from laboratory tests with 
constant amplitude [15-17]. Laboratory tests confirm that 
fatigue failure depends significantly only on the minimum and 
maximum values of stresses during the cycle. Practically, the 
random fatigue loading process can be replaced by a periodic 
load process that is defined as a constant amplitude load cycle. 

The equivalent stress range is defined on the basis of the 
minimum and maximum values of stresses during the cycles, 
which cause the same fatigue damage as from the complicated 
random traffic load. It is shown in paper [18] that the 
equivalent stress range is a random variable with random 
variability due to uncertainties associated with the load history, 
which can be expressed using several probability density 
functions (Lognormal, Weibull or Gamma).  

The aim of this paper is to determine the value of the 
coefficient of variation of the equivalent stress range, which is 
associated with uncertainties associated with the load history.  

It is shown in the article that the introduction of the 
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equivalent stress range as a random variable is justified. The 
basic types of probability density functions for the appropriate 
modelling of the equivalent stress range are presented. 

II. FATIGUE LIFE ASSESSMENT OF STEEL BRIDGES 
Many old bridges cannot be renovated or replaced within a 

reasonable budget constraint. However, their lifetime should 
be extended as much as possible for reasons of sustainability 
[19]. The estimation of the residual life requires the use of 
sophisticated reliability assessment methods. A gradual 
increase in the complexity and sophistication of various levels 
of evaluation, from common standard-based methods to 
advanced methods based on fracture mechanics and 
probability assessment, can be expected. On the other hand, 
computational models that describe more complex phenomena 
will typically require more input variables and modelling 
options that are affected by uncertainty. This leads to a greater 
need for reliable information regarding the properties and 
actual state of the structure. 

A. Linear Elastic Fracture Mechanics  
Linear elastic fracture mechanics is based on the analysis of 

cracks in linear elastic materials. It can be used to solve most 
practical problems in mechanical and civil engineering, such 
as the estimation of reliability and lifetime of load bearing 
steel structures with cracks. The theory is based on linearity 
making it possible to easily combine theoretical, numerical and 
experimental analyses of fracture.  

Fatigue crack growth is generally described by Paris’s rule, 
which is expressed by Paris and Erdogan [20].  
 

( )mKC
dN
da

∆⋅= . (1) 

 
Equation (1) describes the behaviour of cracked materials 

subjected to many times repeated loading and implies the 
knowledge of both the stress intensity factor (ΔK) and the 
crack growth rate (da/dN), where m and C are material-related 
parameters. The parameter C can be expressed as  

 
( ) 21log cmcC ⋅+= , (2) 

 
where c1, c2 can be considered for steel grade S235 as c1 = 

-11.141, c2 = -0.507 [21]. The range of stress intensity factor 
ΔK can be determined by Broek [22]. 
 

( )afaK ⋅⋅∆=∆ πσ , (3) 
 
where Δσ is the quasi–constant stress range and f(a) is the 

calibration function (geometric factor) obtained from 
experimental and numerical research, see for e.g. [15-17]. The 
calibration function f(a) is member-specific and may not be 
applicable for other cases. However, many types of calibration 
functions can be found in handbooks [23, 24]. 

By substituting Eq. (3) into Eq. (1) and then integrating it, 
we can obtain a relationship that determines crack propagation 
from length a1 to a2 due to the effects of the number of cycles 
from N1 to N2. 
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In bridge structures, a crack may propagate from the initial 

size a0 to the critical size acr right from the first load cycle 
from the passage of the first vehicle. Fatigue crack initiation 
often occurs at an inclusion, impurity or surface flaw, which 
acts as a local stress raiser and results in small scale plastic 
deformation. Under this assumption, we can substitute a1=a0, 
a2=acr, N1=0 and N2=N in Eq. 4, where N is the total number of 
cycles that cause crack propagation from length a1 to a2. 
 

( )[ ] .
0

m
a

a
m NC

aaf

dacr
σ

π
∆⋅⋅=∫

⋅⋅
 (5) 

 
The quasi–constant stress range Δσ of longitudinal stress is 

written on the right side of Eq. (5). A real bridge is subjected 
to varying stress range spectrum from the passage of axles of 
vehicles of different weights. For the purpose of taking the 
stress range spectrum from the histogram, the right side of 
equation (5) can be substituted by the sum: 
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where Δσj are direct stress ranges representing class 

intervals of the spectrum, ni is the frequency of amplitudes in 
these spectrums and M is the total number of classes of the 
spectrum. It can be written that the sum of all ni is equal to N. 
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In the limit case, one stress range and one frequency fall 

into each class. On this basis, Eq. (7) can be modified as: 
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where Δσj are direct stress ranges. Substituting (8) into (6) 

and subsequently into (5) we can write 
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B. Equivalent Stress Range  
By comparing (9) and (5) or (8) and (6) the histogram of 

direct stress range spectrum can be replaced by the equivalent 
stress range ΔσE, which can be determined from Eq. (10): 
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For N cycles, the equivalent stress range ΔσE should cause 

the same fatigue damage as the direct stress range spectrum 
expressed by the histogram. Therefore, it is necessary in the 
sum in Eq. (10) to omit small values Δσj<ΔσL, which do not 
cause fatigue damage, where ΔσL is the cut-off limit [18].  

The cut-off limit ΔσL is the limit below which stress ranges 
of the design spectrum do not contribute to the calculated 
cumulative damage [6]. Standard [25] determines ΔσL using S-
N curves. Standard [25] determines the cut-off limit ΔσL for 
direct stress ranges at the number of cycle NL=1E8. The 
application of S-N curves [26] is well established in structural 
design [27], however, information pertaining to time-variable 
load and the detection of cracks from measurement carried out 
during the operational period of a bridge cannot be 
incorporated into reliability calculations [28]. The basic tools 
for these calculations are provided by fracture mechanics. 
According to Eq. (5) ΔσL can theoretically be written as  
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Eq (11) provides an approximate calculation of ΔσL. 

However, it is necessary to know the size of a0 and other 
material parameters that are generally random and thus point 
to the random nature of ΔσL. The uncertainty of ΔσL is one of 
the causes of the uncertainty of ΔσE. 

Other sources of the uncertainty of the equivalent stress 
range ΔσE are the conditions of investigation and evaluation of 
the measurements of Δσj [18]. Direct stress range histograms 
are produced by using the rain-flow cycle counting method 
[18]. This method is generally accepted and is used for the 
assessment of fatigue. 

Generally, there exist two types of tests to investigate live 
load effects: controlled and uncontrolled tests [18]. Controlled 
live load tests are used to investigate the effects of vehicle 
speed and position on the bridge deck, whilst uncontrolled live 
loading tests are used to investigate the overall influence of 
real traffic. Stress range histogram data are usually collected 
during the uncontrolled monitoring. The equivalent stress 
range and average daily traffic are calculated on the basis of 
the stress-range histogram created from the long-term 
monitoring program. As a result of loading uncertainties, a 
probabilistic approach, which considers various probability 
density functions for the load effects, can be used for 
predicting stress ranges during the fatigue lifetime. 

III. COMPUTATION OF PROBABILITY DENSITY FUNCTIONS OF 
EQUIVALENT STRESS RANGE - CASE STUDY 

Identification of the random variability of the equivalent 
stress range ΔσE can be performed using the methodological 

procedure that is presented in the following case study. Let us 
consider a histogram of direct stress range spectrum, which 
was obtained from monitoring on a real bridge, see Fig. 1. The 
statistical characteristics of the histogram in Fig. 1 are listed in 
Table 1. The histogram data is uncertain for the reasons 
described in [18].  

 

 
Fig. 1 Histogram of stress range spectrum based on measurements 

In article [18] it is recommended to approximate the 
histogram using Gamma, Weibull or log-normal probability 
density functions (pdfs) after the application of the goodness 
of fit tests. 

TABLE I 
STATISTICAL CHARACTERISTICS OF HISTOGRAM IN FIG. 1 

Characteristic Value 
Valid observations 
Minimum                
Maximum                
Range                  
Median 
Arithmetic mean 
Geometric mean         
Mean square 
Variance               
Stand. deviation       
Coef. of variation     
Third moment           
Stand. skewness        
Fourth moment          
Stand. kurtosis        
Variance of mean 
Var. of variance       
Var. of 3. moment      
Var. of 4. moment 

100000 
0.00045 
65.998 
65.997 
15.355 
18.000 
13.490 
161.51 
161.51 
12.709 

0.70615 
2402.4 
1.1705 

0.11214E+06 
4.2992 

0.0016151 
0.12539E+06 

766.95 
0.19628E+07 

 
Kolmogorov-Smirnov goodness of fit test does not reject the 

hypothesis that the histogram has a Weibull or log-normal 
probability density function. Anderson-Darling goodness of fit 
test does not reject the hypothesis that the histogram has a 
Gamma, Weibull or log-normal probability density function.  

Let the shape of the histogram have one of these three 
probability density functions. The values of the direct stress 
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range are positive (lower limit) and are limited by an upper 
limit beyond which excessive static loading or failure of the 
bridge may occur. This upper limit may be related, for 
example, to the maximum weight of the vehicle that may pass 
over the bridge.  

 

 
Fig. 2 Histogram acc. to Gamma probability density function 

Histograms for the case study in Fig. 2 to Fig. 4 are defined 
in the interval [0, 100 MPa] and fit the shapes of Gamma, 
Weibull or log-normal probability density functions from 
Fig. 1. The nonparametric histograms in Fig. 2 to Fig. 4 
effectively replace the parametric probability density functions 
from Fig. 1. 

TABLE II 
STATISTICAL CHARACTERISTICS OF HISTOGRAM IN FIG. 2 

Characteristic Value 
Valid observations:  
Minimum:                
Maximum:                
Range:                  
Median:                 
Arithmetic mean:        
Geometric mean:         
Mean square:            
Variance:               
Stand. deviation:       
Coef. of variation:     
Third moment:           
Stand. skewness:        
Fourth moment:          
Stand. kurtosis:        
Variance of mean 
Var. of variance:       
Var. of 3. moment:      
Var. of 4. moment:      

100000 
0.1681 
99.765 
99.597 
15.058 
18.000 
13.726 
161.52 
161.52 
12.709 

0.70606 
2805.1 
1.3665 

0.14671E+06 
5.6236 

      0.0016152 
0.21475E+06 

2596.3 
0.13616E+08 

 
The statistical characteristics of the histogram in Fig. 2 are 

listed in Table 2. It is evident that the histogram in Fig. 2 
based on Gamma probability density functions has the same 
mean value and standard deviation as the histogram in Fig. 1 
(see Table 1), but values of standard skewness and kurtosis are 
different. 

The histogram in Fig. 3 is created after the negative values 

of Weibull probability density functions have been cut-off and 
therefore the first three statistical moments are slightly 
different, nevertheless the standard kurtosis value of 4.13 is 
relatively close to the histogram in Fig. 1 (compared to 5.62 
from Table II). 

 

 
Fig. 3 Histogram acc. to Weibull probability density function 

The histogram in Fig. 3 assumes a slightly higher frequency 
of occurrence of vehicles with almost zero weight and has a 
lower frequency of occurrence of very heavy vehicles 
(compared to Fig. 2). 

TABLE III 
STATISTICAL CHARACTERISTICS OF HISTOGRAM IN FIG. 3 

Characteristic Value 
Valid observations:  
Minimum 
Maximum 
Range 
Median:                 
Arithmetic mean 
Geometric mean 
Mean square:            
Variance 
Stand. deviation 
Coef. of variation:     
Third moment 
Stand. skewness 
Fourth moment:          
Stand. kurtosis 
Variance of mean:       
Var. of variance:       
Var. of 3. moment:      
Var. of 4. moment:      

100000 
0.00048 
76.977 
76.977 
16.702 
18.596 
14.680 
129.58 
129.58 
11.384 

0.61214 
1425.2 

0.96615 
69367. 
4.1310 

0.0012958 
47938.0 
464.69 

0.12348E+07 
 

The histogram in Fig. 4 is based on the log-normal 
probability density function in Fig. 1. The truncated log-
normal histogram is found in the interval [0, 100] MPa and 
thus the mean value and standard deviation are the same as for 
the histogram in Fig. 1. (see Table 1), but the values of 
standard skewness and kurtosis are different. In particular, the 
high standard kurtosis value of 15.018 (see Table IV) differs 
greatly from the value of 4.2992 in Table 1. 
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Fig. 4 Histogram acc. to log-normal probability density function 

The histogram in Fig. 4 assumes zero frequency of 
occurrence of vehicles with zero weight. 

TABLE IV 
STATISTICAL CHARACTERISTICS OF HISTOGRAM IN FIG. 4 

Characteristic Value 
Valid observations:  
Minimum:                
Maximum:                
Range:                  
Median:                 
Arithmetic mean:        
Geometric mean:         
Mean square:            
Variance:               
Stand. deviation:       
Coef. of variation:     
Third moment:           
Stand. skewness:        
Fourth moment:          
Stand. kurtosis:        
Variance of mean:       
Var. of variance:       
Var. of 3. moment:      
Var. of 4. moment:      

100000 
0.8859 
244.05 
243.17 
14.704 
18.000 
14.704 
161.44 
161.44 
12.706 

0.70590 
5037.6 
2.4558 

0.39142E+06 
15.018 

0.0016144 
0.15308E+07 

46465.0 
0.13532E+10 

 
The mean value of ΔσL is considered as 12 MPa in all cases. 

The randomness of ΔσL, which is one of the causes of the 
randomness of the equivalent stress range ΔσE, was taken into 
account with regard to the application of Eq. (10).  

When calculating the equivalent stress range ΔσE, equation 
(10) is modified to include only Δσj>ΔσL, which are 
responsible for fatigue damage, see Eq. (12).  
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j
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∑ ∆=∆
=

σσ  (12) 

 
Equation (12) considers only NC values of jσ∆  Δσj>ΔσL, 

where NC ≤ N, for the calculation of the equivalent stress range 
ΔσE. Conversely, Δσj ≤ ΔσL do not cause fatigue damage and 
are not considered in Eq. (12). In the present study, two 
alternatives A1 and A2 of the randomness of the cut-off limit 

are considered, see Fig. 5 and Fig. 6. Alternative A1 assumes 
Gauss probability density function of cut-off limit with cut-off 
negative values, see Fig. 5 Alternative A2 assumes log-normal 
probability density function for cut-off limit, see Fig. 6. 

 
Fig. 5 Selected variants of cut-off limit with Gauss pdf  

 
Fig. 6 Selected variants of cut-off limit with log-normal pdf 

The equivalent stress range ΔσE is evaluated according to 
Eq. (12) using the Latin Hypercube Sampling (LHS) method 
[29, 30]. The flowchart of the computation of ΔσE is shown in 
Fig. 7. Practically, we can proceed as follows: 

The coefficient of variation of the cut-off limit is chosen, for 
example v=0.2, alternative A1, see Fig. 5. 100 random 
samplings of the cut-off limit are simulated using the LHS 
method for this coefficient of variation. The first random 
realization of the equivalent stress range ΔσE is evaluated 
using 100 thousand random samplings simulated using the 
Gamma histogram in Fig. 2 so that the random realizations 
smaller than the cut-off limit are not applied in the sum (12). 
This procedure is repeated 100 times for other random 
realizations of the cut-off limit. Each random realization of the 
cut-off limit leads to one random realization of ΔσE, which is 
evaluated using 100 thousand random sampling simulated 
from the Gamma histogram in Fig. 2. Another 100 random 
realizations of ΔσE are obtained in a similar manner for the 
histograms in Fig. 3 and Fig. 4. In total, three times a hundred 
random realizations of ΔσE are obtained, from which the 
histogram of ΔσE is then plotted, see Fig. 8.  
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Fig. 7 Flow chart of the computation of ΔσE  

A detailed statistical evaluation of the histogram in Fig. 8 is 
in Table V. The mean value, standard deviation and coefficient 
of variation of the histogram in Fig. 8 are plotted as points 
(outputs) in the graphs and the procedure is repeated for other 
input values of the cut-off limit variant. 

 

 
Fig. 8 Histogram for cut-off limit A1, v=0.2. 

The histogram shown in Fig. 8 is evaluated from three 
hundred random realizations of ΔσE, where each is calculated 
by applying Eq. (12) using the Gamma histogram, Weibull 
histogram and log-normal histogram and using the random 
realizations of the cut-off limit based on the Gauss probability 
density function with v=0.2. The histogram in Fig. 8 takes into 
account the overall uncertainty of the approximation of the 
original histogram in Fig. 1. A detailed statistical evaluation of 
the histogram in Fig. 8 is presented in Table V. 

TABLE V 
STATISTICAL CHARACTERISTICS OF HISTOGRAM IN FIG. 8 

Characteristic Value 
Valid observations:  
Minimum:                
Maximum:                
Range:                  
Median:                 
Arithmetic mean:        
Geometric mean:         
Mean square:            
Variance:               
Stand. deviation:       
Coef. of variation:     
Third moment:           
Stand. skewness:        
Fourth moment:          
Stand. kurtosis:        
Variance of mean:       
Var. of variance:       
Var. of 3. moment:      
Var. of 4. moment:      

300 
25.616 
36.870 
11.253 
29.907 
30.011 
29.939 
4.3885 
4.4032 
2.0984 

0.06992 
3.3189 

0.36101 
53.755 
2.7911 

0.01463 
8.1236 
1.5227 
92.111 

 
The histogram shown in Fig. 9 is evaluated in the same 

manner as the histogram in Fig. 8, but with the difference that 
the cut-off limit A2 is applied. A detailed statistical evaluation 
of the histogram in Fig. 9 is presented in Table VI. The mean 
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value, standard deviation and coefficient of variation of the 
histogram in Fig. 9 are plotted on the graphs in Fig. 12, Fig. 13 
and Fig. 14. 

 

 
Fig. 9 Histogram for cut-off limit A2, v=0.2. 

It is evident that the histograms in Fig. 8 and Fig. 9 are 
similar. From a technical point of view, the type of probability 
density function of the cut-off limit (Gauss or log-normal) has 
little influence on the statistical evaluation of ΔσE. 

TABLE VI 
STATISTICAL CHARACTERISTICS OF HISTOGRAM IN FIG. 9 

Characteristic Value 
Valid observations:  
Minimum:                
Maximum:                
Range:                  
Median:                 
Arithmetic mean:        
Geometric mean:         
Mean square:            
Variance:               
Stand. deviation:       
Coef. of variation:     
Third moment:           
Stand. skewness:        
Fourth moment:          
Stand. kurtosis:        
Variance of mean:       
Var. of variance:       
Var. of 3. moment:      
Var. of 4. moment:      

300 
25.802 
37.502 
11.701 
29.893 
30.007 
29.934 
4.4345 
4.4494 
2.1094 

0.07029 
4.3750 

0.46850 
60.229 
3.0627 

0.01478 
10.377 
2.3047 
160.06 

 
The histograms in Fig. 10 and Fig. 11 are processed in a 

similar manner to the histograms in Fig. 8 and Fig. 9 with the 
difference that the coefficient of variation v=0.36 is applied. 

A detailed statistical evaluation of the histogram in Fig. 10 
is presented in Table VII. A detailed statistical evaluation of 
the histogram in Fig. 11 is presented in Table VIII.  

Fig. 8 to Fig. 11depict the approximation of histograms 
using four probability density functions (Hermite, log-normal, 
Gamma and Gauss) that were not rejected by the goodness of 
fit tests.  

 

 

 
Fig. 10 Histogram for cut-off limit A1, v=0.36. 

 
Fig. 11 Histogram for cut-off limit A2, v=0.36.  

TABLE VII 
STATISTICAL CHARACTERISTICS OF HISTOGRAM IN FIG. 10 

Characteristic Value 
Valid observations:  
Minimum:                
Maximum:                
Range:                  
Median:                 
Arithmetic mean:        
Geometric mean:         
Mean square:            
Variance:               
Stand. deviation:       
Coef. of variation:     
Third moment:           
Stand. skewness:        
Fourth moment:          
Stand. kurtosis:        
Variance of mean:       
Var. of variance:       
Var. of 3. moment:      
Var. of 4. moment:      

300 
24.779 
41.800 
17.022 
29.805 
30.239 
30.092 
9.2559 
9.2869 
3.0474 

0.10078 
21.266 

0.75519 
297.24 
3.4695 

0.03085 
276.45 
31.430 
4838.2 
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Kolmogorov-Smirnov, Anderson-Darling and Chi-Square 
goodness of fit tests concluded that neither type of probability 
density function shown in Fig. 8 to Fig. 11 cannot be rejected 
reliably. The suitability of probability density function type 
can also be discussed in connection with the values of 
skewness and kurtosis of the equivalent stress range, see Fig. 
15 and Fig. 16. 

The randomness of ΔσE is effectively influenced from the 
value of the coefficient of variation of the cut-off limit ≈0.1. In 
the limit case, if the cut-off limit has a zero coefficient of 
variation, the randomness of ΔσE is caused only by three 
random realizations of ΔσE, where each histogram in Fig. 2 to 
Fig. 4 leads to one random realization of ΔσE. Thus, plotting 
the statistical characteristics of ΔσE for small values of the 
coefficient of variation of the cut-off limit is only indicative in 
order to present the limit value of the statistical characteristics, 
see the left part of the graphs in Fig. 12 to Fig. 16. Based on 
the results in Fig. 15 and Fig. 16, the approximation by the 
appropriate type of probability density function should not be 
inferred if the coefficients of variation of the cut-off limit are 
low.  

TABLE VIII 
STATISTICAL CHARACTERISTICS OF HISTOGRAM IN FIG. 11 

Characteristic Value 
Valid observations:  
Minimum:                
Maximum:                
Range:                  
Median:                 
Arithmetic mean:        
Geometric mean:         
Mean square:            
Variance:               
Stand. deviation:       
Coef. of variation:     
Third moment:           
Stand. skewness:        
Fourth moment:          
Stand. kurtosis:        
Variance of mean:       
Var. of variance:       
Var. of 3. moment:      
Var. of 4. moment:      

300 
24.914 
43.017 
18.103 
29.702 
30.222 
30.071 
9.5875 
9.6195 
3.1015 

0.10262 
27.472 

0.92543 
366.74 
3.9898 

0.03196 
425.19 
55.269 
9966.2 

 
Approximation by Gauss or log-normal probability density 

functions can be recommended for higher values of the 
coefficient of variation of the cut-off limit, see Fig. 8 to Fig. 
11. Although the log-normal probability density function better 
approximates the positive values of skewness, it is less suitable 
for the approximation of the values of kurtosis less than three. 
Conversely, the Gauss probability density function better 
reflects the values of kurtosis and worse the values of 
skewness. However, the differences are not large and other 
suitable types of bell-shaped probability density functions can 
be applied if the goodness of fit tests do not reject such a 
choice. Furthermore, the question of the appropriate type of 
probability density function can be discussed again in the 

future and addressed by goodness of fit tests using current 
measurement data. 

Coefficient of variation 0.05 to 0.1 of the equivalent stress 
range ΔσE can be considered in the case study presented here. 
If more specific information is unavailable, the coefficient of 
variation of the equivalent stress range ΔσE can be considered 
as approximately 0.1 in stochastic models, see for e.g. [31, 
32]. This coefficient of variation corresponds approximately to 
the coefficient of variation of the cut-off limit of about 0.2 
with a slight increase due to additional uncertainties arising 
from the uncertainties of the conditions of the long-term 
monitoring program, which result in a higher value of the 
coefficient of variation.  

 

 
Fig. 12 Var. coeff. of cut-off limit vs mean value of ΔσE  

 
Fig. 13 Var. coeff. of cut-off limit vs std. deviation of ΔσE  

 
Fig. 14 Var. coeff. of cut-off limit vs var. coeff. of ΔσE  
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Fig. 15 Var. coeff. of cut-off limit vs skewness of ΔσE  

 
Fig. 16 Var. coeff. of cut-off limit vs kurtosis of ΔσE  

IV. CONCLUSION 
The presented case study showed that the uncertainty of the 

equivalent stress range ΔσE can be modelled with a coefficient 
of variation from 0.05 to 0.1. 

It is shown in the paper that the obtained value of the 
coefficient of variation [0.05, 0.1] is given by uncertainties 
present in the statistical evaluation of the histogram of the 
stress range spectrum. The coefficient of variation may be 
increased in connection with other uncertainties of the long-
term monitoring program performed during the operational 
period of the bridge. It is very intuitive that increasing the 
coefficient of variation may be significant when the monitoring 
program is burdened with greater uncertainty, for example, 
with regard to changes in the expected traffic load. The traffic 
load can vary (grow) during the lifetime of the bridge, but may 
be limited at the end of the lifetime for safety reasons if the 
bridge exhibits large fatigue failure whose repair is no longer 
economical. 

Gauss or log-normal probability density function with 
coefficient of variation 0.1 of equivalent stress range ΔσE can 
be recommended for practical use in most theoretical 
stochastic computational models if more accurate information 
on uncertainties of data from the monitoring program is 
unavailable. 

The case study showed a methodology for the statistical 
analysis of the random variability of the equivalent stress range 
ΔσE, which can be further discussed and developed. Based on 

the presented methodology, the random variability of the 
equivalent stress range ΔσE can also be analysed in other case 
studies using input data from measurements. 
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